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Stability Affects of Artificial Viscosity in Detonation 
Modeling 

P. Vitello and P. Clark Souers, Energetic Materials Center 
Lawrence Livermore National Laboratory 

Livermore, CA, 94550 

Accurate multi-dimensional modeling of detonation waves in solid HE 
materials is a difficult task. To treat applied problems which contain detonation 
waves one must consider reacting flow with a wide range of length-scales, non- 
linear equations of state (EOS), and material interfaces at which the detonation 
wave interacts with other materials. T o  be useful numerical models of 
detonation waves must be accurate, stable, and insensitive to details of the 
modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional 
simulations. Studies we have performed show that numerical simulations of 
detonation waves can be very sensitive to the form of the artificial viscosity term 
used. The artificial viscosity term is included in our ALE hydrocode to treat 
shock discontinuities. We show that a monotonic, second order artificial 
viscosity model derived from an approximate Riemann solver scheme can 
strongly damp unphysical oscillations in the detonation wave reaction zone, 
improving the detonation wave boundary wall interaction. These issues are 
demonstrated in 2D model simulations presented of the “Bigplate” test. Results 
using LX-I 7 explosives are compared with numerical simulation results to 
demonstrate the affects of the artificial viscositv model. 

INTRODUCTION 

Accurate numerical modeling of high 
explosive detonation is an important part of the 
Accelerated Strategic Computer Initiative 
(ASCI) at Lawrence Livermore National 
Laboratory (LLNL). A goal of this initiative is 
the replacement of highly empirical models with 
physically accurate numerical calculations. To 
be useful numerical models of detonation waves 
must be accurate, stable, and insensitive to 
details of the modeling such as  the mesh spacing, 
and mesh aspect ratio. To treat applied problems 
that contain detonation waves one must consider 
reacting flow with a wide range of length-scales, 
with non-linear equations of state (EOS), and 
with material interfaces at which the detonation 
wave interacts with other materials. Two and 
three-dimensional hydrodynamic propagation of 
detonation waves over long periods of time and 
around complex shapes is a challenging 
proposition even for current massively parallel 
supercomputer systems. Studies we have 
performed show that numerical simulations of 
detonation waves can be very sensitive to the 
form of the artificial viscosity term used. We 
show that a monotonic, second order artificial 
viscosity model derived from an approximate 

Riemann solver scheme can strongly damp 
unphysical oscillations in the detonation wave 
reaction zone, improving the detonation wave 
boundary wall interaction. 

COMPUTATIONAL APPROACH 

There are many Reactive Flow code models 
that often used for detonation initiation studies 
and less often for prompt detonation.(“’) We 
have used in this study the JWL++ Reactive 
Flow model. This model provides for simulation 
of prompt detonation with a minimum number of 
coefficients, and produces good results when 
comparing with the limited amount of 
experimental data. 

In its simplest form, the JWL++ model has 
four parts. The first is the use of the Murnahan 
EOS to describe the unreacted explosive EOS 

where P, is the pressure and v = po/p is the 
relative volume The second part is the use of a 



JWL EOS in the C-term form to describe the 
reacted explosive 

This JWL may be calculated directly from the 
equilibrium thermochemical code CHEETAH 
with a slight adjustment to the detonation 
velocity. It needs no corrections for non-ideality. 

The third and fourth parts of the model are 
the analytic pressure mixer 

P = (1 - F")P, + F"PR , (3) 

and the rate equation describing the 
transformation of the unreacted to the reacted 
explosive, 

dF 
dt 

- = G ( P + Q ) ~ ( ~ - F ) .  (4) 

F is the reacted mass fraction and Q is the "so 
called' artificial viscosity. As is discussed in the 
following, in a numerical simulation, P + Q, 
gives the correct effective pressure. 

JWL++ can reproduce the Size Effect and 
detonation front curvature. It shows all the 
prompt detonation features displayed by the 
more complex Reactive Flow model Ignition & 
Growth.(' Detailed comparisons of the analytic 
pressure mixer, equation (3), with more complex 
partially burned pressure models show that the 
detonation results are insensitive to the choice of 
pressure mixing model.' The calculations shown 
here were undertaken using JWL++ 
implemented in a 2-D Arbitrary-Lagrangian- 
Eulerian (ALE) hydrocode, which starts 
Lagrangian and relaxes the mesh as needed with 
time. 

APPROXIMATE RIEMANN SOLVER 

Detonation waves have highly non-linear 
structures. The form of the shock wave and the 
behavior of the pressure profile in the reaction 
zone that are sensitive to how the hydrodynamic 
equations are solved. The aspect that we address 
here is the form for the Q term, which can be 
based on an approximate Riemann solver 
scheme. 

The Euler equations of gas dynamics in 
Lagrangian coordinates can be written in 
differential conservation-law form as 

au - - - + V - F = O  
at 

A discrete representation of a solution for U 
in one-dimension can be given as 

In equation (6), z corresponds to a spatial cell 
center position (see Figure l ) ,  i+//2 corresponds 
to cell boundary position, and n gives the time 

level. Un and U,n+lcorrespond to the spatial 
cell averaged values of  the physical variables at 
the beginning and end of the timestep. Note that 
for Lagrangian coordinates 6x corresponds to a 
mass increment. 

U" ' 

FIGURE 1. DISCRETE SOLUTION OF U. 

The discrete solutions of equation (6) can be 
viewed as a series of localized Riemann 
problems followed over a time period 6t. The 
Riemann problem is the initial value problem in 
the eomain -a < x  < 00, t > 0 with initial data 
U(x,0) = {UL, x < 0; UR, x > 0).  For the gas 



dynamic equations, the Riemann solution always 
has discontinuities and consists of three waves, 
as is shown in Figure 2. The left and right waves 
are non-linear and may be either shock waves or 
rarefaction waves. The middle wave is always a 
contact discontinuity. Each wave carries 
information in an upwind manner and hence the 
resulting state will only depend on the local 
physical properties. In order to define 
completely the interaction between adjacent 
spatial cells, St should be limited by the 
condition that adjacent Riemann problems do not 
interfere. 

Using an upwind spatial differencing scheme, 
the flux can be approximated as 

i 

I i+l 

FIGURE 2. RIEMANN SOLUTtON. 

As was first demonstrated by Godunov", one 
can use the exact localized non-linear Riemann 
solution to calculate 1 2  . Godunov 
developed a three-step scheme to solve the 
discrete gas dynamic equations. The first step is 
to define a piecewise, cell averaged, 
representation of U at time level n (see Figure 1). 
Step two, which results in c+l,2, is to obtain the 
local Riemann problem at cell interfaces. The 
final step is to average the variables spatially 
after a time interval & to provide new starting 
values for U. 

- 

Solving the non-linear Riemann problem for 
real gases is not practical for large multi- 
dimensional calculations. Since the discrete 
numerical schemes used in the numerical model 
already assume spatial averaging, an 
approximate solution to the Riemann problem 
can do nearly as good a job as an exact solution. 

where 2 is the Jacobian of with respect to U. 
How one approximates the Riemann problem 
determines the value of 2. The scheme in 
equation (7) is first-order in space as shown. 
This is due to the use of piecewise constant 
values for the cell center U, values which results 
in the assumption that if and UR for the 
Riemann problem discontinuity at i + f R  are 
equal respectively to U, and Ul+,. With a 
replacement of U, and U,,, by their extrapolated 
values as in the MUSCL method, second order 
or higher spatial accuracy can be achieved." 
Expanding the difference in U in equation (7) in 
terms of a sum over characteristic waves 
variables w leads to 

For an ideal gas with adiabatic index y, the 
eigenvalues, ;I , and eigenvectors, F , of 

- 
are 

i.[ -C ;] , (9) 

and 
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with C being the effective sound speed. The 
variables i5, C, and Fare  functions of U, and 
U,+l  and their value again depends on how one 
approximates the Riemann problem. The 
differences in the characteristic variables are 

6w= 

In many implementations of a Lagrangian or 
ALE hydrocodes, including the one used in this 
study, the material density and energy are 
calculated at cell centers, and the velocity is 
calculated at cell boundaries. For this staggered 
mesh spatial differencing scheme there are two 
Riemann problems. The velocity Riemann 
problem occurs at the cell center, with conditions 
of 6P = 0, 6p = 0, and finite 6v. The density and 
energy Riemann problem occurs at cell 
boundaries with finite 6P and 6p, and 6v = 0. 

For the velocity equation, the characteristic 

wave correction term, - 16FI , is given by 
L 
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2 
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Using the second component of equation (12) 
gives results in the discrete velocity equation 
being 

with the effective pressure being 
- 1, P = P - - p c & = P + Q .  Q is therefore 

defined as 
2 

The third component of equation (1  2) represents 
the correction to the energy equation resulting 
from a replacement in equation ( 5 )  of P with P + 
Q. For staggered mesh variables, it is sufficient 
to consider only the velocity equation Riemann 
problem and the resulting corrections to the 
Euler equations. Note that like P, Q is a cell- 
centered quantity. 

Approximate Riemann solvers replace the non- 
linear wave structure of the exact solution with a 
reduced number of linear waves. The use of 
linear waves makes non-iterative solutions 
possible. The Harten-Lax-van Leer" (HLL) 
approximate Riemann solver is one of the 
simplest schemes. It uses two waves separating 
a single constant intermediate state. The wave 
speeds are left as parameters to be determined. 
For the HLL model, 

Christensen" proposed equal magnitude wave 
speeds based upon an empirical relation for the 
HLL from particle-velocity/shock-velocity plots 

c is the sound speed in the unshocked material 
and a is a material dependent quantity depending 
on the EOS. In the Christensen model, the 
density 5 to be used in calculating Q should be 
the local unshocked density. The resulting form 
for Q is 



I1 Qj = ?pj[ci 1 +a: 

To improve the accuracy of the differencing 
scheme the variable extrapolation the method 
(MUSCL) is used when evaluating SV in Q. In 
this method we replace the piecewise constant 
approximation of U; with a piecewise linear 
approximation. The slopes of the linear 
variations have to be limited in order to avoid 
overshoots in the numerical solution. 
Overshoots would be avoided if the interface 
values remain between the adjacent average cell 
values. In order to ensure this monotonically 
condition, limiters are used in the definition of 
the interface value. With variable extrapolation, 

R L  6v, = V >  - v; , 
and 

The limiters @ given by Chri~tensen '~ were used. 
For regions of locally smooth variation where @ 
= 1, 2% will be approximately zero to third order, 
leading to the affect of Q being negligible away 
from sharp discontinuities. 

Many Lagrangian and ALE schemes restrict Q 
to be positive only. This limits the stabilizing 
affects of Q's pressure correction to regions of 
compression, but not expansion. There is 
inherent no physical reason to limit Q. The sign 
of 6v played no role in our Riemann problem 
based derivation of Q. For the velocity equation, 
Q represents a damping correction to the 
acceleration. In the energy equation, Q gives an 
effective viscous heating. Both positive and 
negative Q contribute to the heating. This is 
evident if one considers the Q contribution to the 
- P'dV work. In one dimension, the gdV work 
is always positive since Q is positive during 
compression (negative dV), and negative during 
expansion (positive dV). 

For standard, non-reacting shock waves the 
positive only restriction to Q can be beneficial as 
it can reduce numerical heating in regions of 
adiabatic expansion. Proper velocity gradient 
limiting has the same effect. For detonation 
waves, restricting Q to apply to only 
compression regions only can lead to unphysical 
oscillations in the reaction zone behind the shock 
front where there is a rapid decrease in pressure 
and density. 

Results will be presented here for both positive 
only and unrestricted Q. While representing 
only a small fraction of the total effective 
pressure, we show that the wave damping 
contribution of Q can strongly contribute to 
numerical accuracy. 

The BIGPLATE EXPERIMENT 

We have used the "Bigplate" e ~ p e r i m e n t ' ~  
to demonstrate the affect of Q pressure 
correction term. Bigplate is a unique explosive 
test in that variable angles of incidence exist 
between the explosive and the metal being 
pushed. Figure 3 gives a schematic for Bigplate. 
A disk of explosive is pressed with a radius of 
100 mm. The explosives are LX-14 (95.5% 
HMX, 4.5% estane) and TATB. The disk 
thickness is 40 mm. A 0.5 mm oxygen-free 
copper plate is glued to one side of the explosive, 
and a point detonator is placed on the axis at the 
back. A hole is machined so the detonator is 
flush with the back. There is no support plate on 
the back. An ultrafine TATB hemisphere 
booster of 19mm radius is used. The point 
detonator creates a spherical wave that hits the 
copper plate on the axis first, then each point 
later farther out on the radius. 
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FIGURE 3 .  BIGPLATE GEOMETRY 

Five Fabry-Perot interferometer  beam^'^-'^ 
are reflected off of the plate surface to measure 
the free-surface velocity. The beam diameters 
were about 1 mm. The initial radial positions, R, 
are: 0 (on the axis), 10, 20, 40 and 80 mm. The 
initial nominal Fabry angles, p, are 0, 4.5, 7.5, 
10, and 11.5 degrees. These angles are selected 
to be about halfway between the initial and final 
plate positions. The radial distance defines the 
geometric angle of incidence, a, which varies 
from 0" on the axis to 76" at 80 mm. The Fabry 
probes are set 260 mm from the front surface. 
Each probe was checked for he position of its 
light spot on the metal surface. 

Each of the Fabry positions has two lengths. 
The fast Fabry starts before jump-off and runs 
about 2-3 ps. The slow Fabry starts about 1-2 ps 
before the end of the fast sweep and may run for 
10 ps or more. Once the long Fabry is past its 
startup, it may be overlaid, with altering the 
times, with the short Fabry. 

HYDRODYNAMIC CALCULATIONS 

Numerical simulations were conducted using 
320 axial grid points spaced uniformly within the 
explosives, 12 axial grid points spaced uniformly 
within the copper plate, and 800 radial grid 
points spaced uniformly within the explosives 
and 64 radial grid points spaced uniformly 
within the aluminum edge plate. Slide lines 
were placed between the explosive and metal. 
The TATB booster was modeled using 
programmed 5urn. For the booster region the 
lighting times were determined using 

experimental detonation velocity values. For 
LX-17, the detonation velocity is generated self- 
consistently using the JWL++ Reactive Flow 
model. 

In Figures 4-5 we compare the calculated and 
experimental plate velocity at different radial 
points. The dotted curves correspond to the 
experimental data. In Figure 4, Q was limited to 
be positive only, while both positive and 
negative values of Q were allowed in Figure 5. 
The experimental curves correspond to radial 
distances of 0, 1, 2, 4, and 8 cm from the axis. 
The calculated curves correspond to 0, 1, 2, 3, 4, 
5, 6,  7, and 8 cm from the axis. We find very 
good agreement in both the timing of the jump- 
off of the plate and the final plate velocity. 
Values of the initial jump-off velocity are 
however very sensitive to how Q is treated. This 
is clearly evident in the curves at 2, 3, and 4 cm. 
With positive only Q (FIGURE 4), the jump-off 
velocity overshoots, and is then followed by a 
period of constant velocity. The experimental 
jump-off velocities decrease as we move 
outward from the axis. This behavior is 
reproduced using the Q model with both positive 
and negative values (FIGURE 5). 

The calculated velocity curves for both Q 
models are compared in Figure 6. What is 
evident is that in addition to the velocity 
difference shortly after jump-off, there are long- 
term differences as well. Curves at 4 and 5 cm 
for the positive only Q model show lower 
velocities several ps after jump-off. This places 
the positive Q model calculated velocities for 
these curves under the experimental values. 

Where Q is negative, it is never greater in 
magnitude than a few percent of the total 
pressure. Details in Figures 7-8 of the 
detonation wave pressure profiles near the 
copper plate show that even a small amount of 
negative Q pressure correction can lead to 
significant changes in the overall pressure 
profile. It is evident from Figures 7-8 that 
allowing Q to be negative results in a much 
smoother pressure profile. With only positive Q, 
the pressure profiles show strong oscillatory 
behavior. There is a evidence in Figure 7 for 
local minimums behind both the initial and 
reflected the shock peaks. 
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FIGURE 4. SOLID LINE: CALCULATED 
VELOCITY WITH Q LIMITED TO BE 
POSITIVE. DOTTED LINE: 
EXPERIMENTAL DATA. 
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FIGURE 5. SOLID LINE: CALCULATED 
VELOCITY WITH Q POSITIVE AND 
NEGATIVE. DOTTED LINE: 
EXPERIMENTAL DATA. 
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FIGURE 6 .  SOLID LINE: CALCULATED 
VELOCITY WITH Q LIMITED TO BE 
POSITIVE. DOTTED LINE: CALCULATED 
VELOCITY WITH Q POSITIVE AND 
NEGATIVE. 

FIGURE 7. CALCULATED PRESSURE AT 
T=7 ps, WITH Q LIMITED TO BE POSITIVE 
WITH EQUALLY SPACED CONTOURS. 

1 

3.8 3 . 9  z ( c m )  4 . 0  4 . 1  

FIGURE 8. CALCULATED PRESSURE AT 
T=7 ps, WITH Q POSITIVE AND NEGATIVE 
WITH EQUALLY SPACED CONTOURS. 

CONCLUSION 

Many issues remain to be addressed before 
accurate, self-consistent multi-dimensional 
modeling of detonation waves in solid HE 
materials becomes a practical tool. The issue we 
have addressed here is the form for Q. We have 
shown that Q can be viewed as a pressure 
correction term derived from an approximate 
Riemann solver. Allowing Q to damp both 
compression and expansion oscillation ,is shown 
to result in smoother pressure profiles, which 



results in improved agreement with experimental 
data. 
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